Пособие по снип 20203-85

Пособие по снип 20203-85

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

Дата введения 1987-01-01

РАЗРАБОТАНЫ НИИОСП им. Герсеванова Госстроя СССР (канд. техн. наук Б.В.Бахолдин — руководитель темы; доктора техн.наук В.А.Ильичев и Е.А.Сорочан; кандидаты техн.наук Ю.А.Багдасаров, В.М.Мамонов, Л.Г.Мариупольский, В.Г.Федоровский и Н.Б.Экимян; Х.А.Джантимиров), институтом Фундаментпроект Минмонтажспецстроя СССР (кандидаты техн. наук Ю.Г.Трофименков и В.М.Шаевич; Г.М.Лешин и Р.Е.Ханин) и ЦНИИС Минтрансстроя (кандидаты техн.наук Н.М.Глотов, Е.А.Тюленев и И.Е.Школьников) с участием ДальНИИС, Донецкого Промстройниипроекта и Харьковского Промстройниипроекта Госстроя СССР, Гипрогора Госстроя РСФСР, ВНИМИ Минуглепрома СССР, НИИпромстроя Минпромстроя СССР, ЦНИИЭПсельстроя Госагропрома СССР, института Саратовагропромпроект Агропромстроя РСФСР, СЗО Энергосетьпроект Минэнерго СССР, Саратовского и Пермского политехнического институтов, Ленинградского инженерно-строительного института Минвуза РСФСР, ВНИИГС Минмонтажспецстроя СССР, Киевского и Днепропетровского инженерно-строительных институтов Минвуза УССР.

ВНЕСЕНЫ НИИОСП им. Герсеванова Госстроя СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главтехнормированием Госстроя СССР (О.Н.Сильницкая).

УТВЕРЖДЕНЫ постановлением Госстроя СССР от 20 декабря 1985 г. № 243.

С введением в действие СНиП 2.02.03-85 «Свайные фундаменты» с 1 января 1987 г. утрачивают силу:

глава СНиП II-17-77 «Свайные фундаменты»;

изменения и дополнения главы СНиП II-17-77, утвержденные постановлением Госстроя СССР от 16 января 1981 г. № 4, от 17 июля 1981 г. № 122, от 25 октября 1982 г. № 264 и от 6 декабря 1983 г. № 313.

Настоящие нормы распространяются на проектирование свайных фундаментов вновь строящихся и реконструируемых зданий и сооружений.

Настоящие нормы не распространяются на проектирование свайных фундаментов зданий и сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов машин с динамическими нагрузками, а также опор морских нефтепромысловых и других сооружений, возводимых на континентальном шельфе при глубине погружения опор более 35 м.

Свайные фундаменты зданий и сооружений, возводимых в районах с наличием или возможностью развития опасных геологических процессов (карстов, оползней и т.п.), следует проектировать с учетом дополнительных требований соответствующих нормативных документов, утвержденных или согласованных Госстроем СССР.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Выбор конструкции фундамента (свайного, на естественном или искусственном основании), а также вида свай и типа свайного фундамента (например, свайных кустов, лент, полей) следует производить исходя из конкретных условий строительной площадки, характеризуемых материалами инженерных изысканий, расчетных нагрузок, действующих на фундамент, на основе результатов технико-экономического сравнения возможных вариантов проектных решений фундаментов (с оценкой по приведенным затратам), выполненного с учетом требований по экономному расходованию основных строительных материалов и обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов.

1.2. Свайные фундаменты следует проектировать на основе результатов инженерно-геодезических, инженерно-геологических, инженерно-гидрометеорологических изысканий строительной площадки, а также на основе данных, характеризующих назначение, конструктивные и технологические особенности проектируемых зданий и сооружений и условия их эксплуатации, нагрузки, действующие на фундаменты, с учетом местных условий строительства.

Проектирование свайных фундаментов без соответствующего и достаточного инженерно-геологического обоснования не допускается.

1.3. Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа фундамента, в том числе свайного, для определения вида свай и их габаритов (размеров поперечного сечения и длины сваи, расчетной нагрузки, допускаемой на сваю) с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических и гидрогеологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению.

В материалах изысканий должны быть приведены данные полевых и лабораторных исследований грунтов, а в необходимых случаях, устанавливаемых проектной организацией, проектирующей свайные фундаменты, — результаты испытаний натурных свай статической и динамической нагрузками.

Должны быть также приведены геологические разрезы с данными о напластованиях грунтов, расчетных значениях их физико-механических характеристик, используемых в расчетах по двум группам предельных состояний, с указанием положения установленного и прогнозируемого уровней подземных вод, а при наличии результатов зондирования — графики зондирования.

Примечание. Испытания свай, производимые в процессе строительства в соответствии с требованиями СНиП 3.02.01-83, являются только контрольными для установления качества свайных фундаментов и соответствия их проекту.

1.4. В проектах свайных фундаментов должно предусматриваться проведение натурных измерений деформаций оснований и фундаментов в случаях применения новых или недостаточно изученных конструкций зданий и сооружений или их фундаментов, возведения ответственных зданий и сооружений в сложных инженерно-геологических условиях, а также при наличии в задании на проектирование специальных требований по измерению деформаций.

1.5. Свайные фундаменты, предназначенные для эксплуатации в условиях агрессивной среды, следует проектировать с учетом требований СНиП 2.03.11-85, а деревянные конструкции свайных фундаментов — также с учетом требований по защите их от гниения, разрушения и поражения древоточцами.

2.1. По способу заглубления в грунт надлежит различать следующие виды свай:

а) забивные железобетонные, деревянные и стальные, погружаемые в грунт без его выемки с помощью молотов, вибропогружателей, вибровдавливающих и вдавливающих устройств, а также железобетонные сваи-оболочки, заглубляемые вибропогружателями без выемки или с частичной выемкой грунта и не заполняемые бетонной смесью;

б) сваи-оболочки железобетонные, заглубляемые вибропогружателями с выемкой грунта и заполняемые частично или полностью бетонной смесью;

в) набивные бетонные и железобетонные, устраиваемые в грунте путем укладки бетонной смеси в скважины, образованные в результате принудительного отжатия (вытеснения) грунта;

г) буровые железобетонные, устраиваемые в грунте путем заполнения пробуренных скважин бетонной смесью или установки в них железобетонных элементов;

2.2. По условиям взаимодействия с грунтом сваи следует подразделять на сваи-стойки и висячие.

К сваям-стойкам надлежит относить сваи всех видов, опирающиеся на скальные грунты, а забивные сваи, кроме того, на малосжимаемые грунты.

Примечание. К малосжимаемым грунтам относятся крупнообломочные грунты с песчаным заполнителем средней плотности и плотным, а также глины твердой консистенции в водонасыщенном состоянии с модулем деформации 50000 кПа (500 кгс/ ).

Силы сопротивления грунтов, за исключением отрицательных (негативных) сил трения на боковой поверхности свай-стоек, в расчетах их несущей способности по грунту основания на сжимающую нагрузку не должны учитываться.

К висячим сваям следует относить сваи всех видов, опирающиеся на сжимаемые грунты и передающие нагрузку на грунты основания боковой поверхностью и нижним концом.

Примечание. Отрицательными (негативными) силами трения называются силы, возникающие на боковой поверхности сваи при осадке околосвайного грунта и направленные вертикально вниз.

2.3. Забивные железобетонные сваи размером поперечного сечения до 0,8 м включ. и сваи-оболочки диаметром 1 м и более следует подразделять:

в) по форме продольного сечения — на призматические, цилиндрические и с наклонными боковыми гранями (пирамидальные, трапецеидальные, ромбовидные);

д) по конструкции нижнего конца — на сваи с заостренным или плоским нижним концом, с плоским или объемным уширением (булавовидные) и на полые сваи с закрытым или открытым нижним концом или с камуфлетной пятой.

Примечание. Сваи забивные с камуфлетной пятой устраивают путем забивки полых свай круглого сечения в нижней части с закрытым стальным полым наконечником с последующим заполнением полости сваи и наконечника бетонной смесью и устройством с помощью взрыва камуфлетной пяты в пределах наконечника. В проектах свайных фундаментов с применением забивных свай с камуфлетной пятой следует предусматривать указания о соблюдении требований правил производства буровзрывных работ, в том числе при определении допускаемых расстояний от существующих зданий и сооружений до места взрыва.

2.4. Набивные сваи по способу устройства разделяются на:

а) набивные, устраиваемые путем погружения инвентарных труб, нижний конец которых закрыт оставляемым в грунте башмаком или бетонной пробкой, с последующим извлечением этих труб по мере заполнения скважин бетонной смесью;

б) набивные виброштампованные, устраиваемые в пробитых скважинах путем заполнения скважин жесткой бетонной смесью, уплотняемой виброштампом в виде трубы с заостренным нижним концом и закрепленным на ней вибропогружателем;

2.5. Буровые сваи по способу устройства разделяются на:

а) буронабивные сплошного сечения с уширениями и без них, бетонируемые в скважинах, пробуренных в пылевато-глинистых грунтах выше уровня подземных вод без крепления стенок скважин, а в любых грунтах ниже уровня подземных вод — с закреплением стенок скважин глинистым раствором или инвентарными извлекаемыми обсадными трубами;

б) буронабивные полые круглого сечения, устраиваемые с применением многосекционного вибросердечника;

в) буронабивные с уплотненным забоем, устраиваемым путем втрамбовывания в забой скважины щебня;

г) буронабивные с камуфлетной пятой, устраиваемые путем бурения скважин с последующим образованием уширения взрывом и заполнением скважин бетонной смесью;

д) буроинъекционные диаметром 0,15-0,25 м, устраиваемые путем нагнетания (инъекции) мелкозернистой бетонной смеси или цементно-песчаного раствора в пробуренные скважины;

е) сваи-столбы, устраиваемые путем бурения скважин с уширением или без него, укладки в них омоноличивающего цементно-песчаного раствора и опускания в скважины цилиндрических или призматических элементов сплошного сечения со сторонами или диаметром 0,8 м и более;

ж) буроопускные сваи с камуфлетной пятой, отличающиеся от буронабивных свай с камуфлетной пятой (см. подп. «г») тем, что после образования камуфлетного уширения в скважину опускают железобетонную сваю.

Примечания: 1. Обсадные трубы допускается оставлять в грунте только в случаях, когда исключена возможность применения других решений конструкции фундаментов (при устройстве буронабивных свай в пластах грунтов со скоростью фильтрационного потока более 200 м/сут., при применении буронабивных свай для закрепления действующих оползневых склонов и в других обоснованных случаях).

2. При устройстве буронабивных свай в пылевато-глинистых грунтах для крепления стенок скважин допускается использовать избыточное давление воды.

2.6. Железобетонные и бетонные сваи следует проектировать из тяжелого бетона.

Для забивных железобетонных свай с ненапрягаемой продольной арматурой, на которые отсутствуют государственные стандарты, а также для набивных и буровых свай необходимо предусматривать бетон класса не ниже В15, для забивных железобетонных свай с напрягаемой арматурой — не ниже В22,5.

Для коротких набивных и буровых свай (длиной менее 3,5 м) в обоснованных случаях допускается предусматривать применение тяжелого бетона класса не ниже В7,5.

2.7. Железобетонные ростверки свайных фундаментов для всех зданий и сооружений, кроме опор, мостов, гидротехнических сооружений и больших переходов воздушных линий электропередачи, следует проектировать из тяжелого бетона класса, не ниже:

для сборных ростверков — В15

Для опор больших переходов воздушных линий электропередачи класс бетона сборных и монолитных ростверков следует принимать В22,5 и В15 соответственно.

Для опор мостов класс бетона свай и свайных ростверков следует назначать в соответствии с требованиями СНиП 2.05.03-84, для гидротехнических сооружений — СНиП 2.06.06-85.

2.8. Бетон для замоноличивания железобетонных колонн в стаканах свайных ростверков, а также оголовков свай при сборных ленточных ростверках следует предусматривать в соответствии с требованиями СНиП 2.03.01-84, предъявляемыми к бетону для заделки стыков сборных конструкций, но не ниже класса В12,5.

Примечание. При проектировании мостов и гидротехнических сооружений класс бетона для замоноличивания сборных элементов свайных фундаментов должен быть на ступень выше по сравнению с классом бетона соединяемых сборных элементов.

2.9. Марки бетона по морозостойкости и водонепроницаемости свай и свайных ростверков следует назначать, руководствуясь требованиями ГОСТ 19804.0-78, СНиП 2.03.01-84, для мостов и гидротехнических сооружений — соответственно СНиП 2.05.03-84 и СНиП 2.06.06-85.

2.10. Деревянные сваи должны быть изготовлены из бревен хвойных пород (сосны, ели, лиственницы, пихты) диаметром 22-34 см и длиной 6,5 и 8,5 м, соответствующих требованиям ГОСТ 9463-72.

Бревна для изготовления свай должны быть очищены от коры, наростов и сучьев. Естественная коничность (сбег) бревен сохраняется. Размеры поперечного сечения, длина и конструкция пакетных свай принимаются по результатам расчета и в соответствии с особенностями проектируемого объекта.

Примечание. Возможность применения для деревянных свай бревен длиной более 8,5 м допускается только по согласованию с предприятием — изготовителем свай.

2.11. Стыки бревен или брусьев в стыкованных по длине деревянных сваях и в пакетных сваях осуществляются впритык с перекрытием металлическими накладками или патрубками. Стыки в пакетных сваях должны быть расположены вразбежку на расстоянии один от другого не менее 1,5 м.

3. ОСНОВНЫЕ УКАЗАНИЯ ПО РАСЧЕТУ

3.1. Расчет свайных фундаментов и их оснований должен быть выполнен по предельным состояниям:

а) первой группы:

по прочности материала свай и свайных ростверков (см.п.3.6);

по несущей способности грунта основания свай (см.п.3.10);

по несущей способности оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.) или если основания ограничены откосами или сложены крутопадающими слоями грунта и т.п. (см.п.3.13);

б) второй группы:

по осадкам оснований свай и свайных фундаментов от вертикальных нагрузок (см.п.3.15, разд.6);

по перемещениям свай (горизонтальным углам поворота головы свай совместно с грунтом оснований от действия горизонтальных нагрузок и моментов (см. рекомендуемое приложение 1);

по образованию или раскрытию трещин в элементах железобетонных конструкций свайных фундаментов (см. п.3.6).

3.2. Нагрузки и воздействия, учитываемые в расчетах свайных фундаментов, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок следует принимать в соответствии с требованиями СНиП 2.01.07-85 с учетом указаний СНиП 2.02.01-83.

Значения нагрузок необходимо умножать на коэффициенты надежности по назначению, принимаемые согласно «Правилам учета степени ответственности зданий и сооружений при проектировании конструкций», утвержденным Госстроем СССР.

3.3. Расчет свай, свайных фундаментов и их оснований по несущей способности необходимо выполнять на основные и особые сочетания нагрузок, по деформациям — на основные сочетания.

3.4. Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете свайных фундаментов мостов и гидротехнических сооружений следует принимать согласно требованиям СНиП 2.03.05-84 и СНиП 2.06.06-85.

3.5. Все расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и грунтов.

Расчетные значения характеристик материалов свай и свайных ростверков следует принимать в соответствии с требованиями СНиП 2.03.01-84, СНиП II-23-81, СНиП II-25-80, СНиП 2.05.03-84 и СНиП 2.06.06-85.

Расчетные значения характеристик грунтов следует определять по указаниям СНиП 2.02.01-83, а расчетные значения коэффициентов постели грунта окружающего сваю, следует принимать по указаниям рекомендуемого приложения 1.

Расчетные сопротивления грунта под нижним концом сваи R и на боковой поверхности сваи следует определять по указаниям разд. 4.

При наличии результатов полевых исследований, проведенных в соответствии с требованиями разд. 5, несущую способность грунта основания свай следует определять с учетом данных статического зондирования грунтов, испытаний грунтов эталонными сваями или по данным динамических испытаний свай. В случае проведения испытаний свай статической нагрузкой несущую способность грунта основания сваи следует принимать по результатам этих испытаний.

3.6. Расчет по прочности материала свай и свайных ростверков должен производиться в соответствии с требованиями СНиП 2.03.01-84, СНиП II-23-81, СНиП II-25-80, для мостов и гидротехнических сооружений — СНиП 2.05.03-84 и СНиП 2.06.06-85 с учетом дополнительных требований, изложенных в пп.3.5, 3.7 и 3.8 и в рекомендуемом приложении 1.

Расчет элементов железобетонных конструкций свайных фундаментов по образованию и раскрытию трещин следует производить в соответствии с требованиями СНиП 2.03.01-84, для мостов и гидротехнических сооружений — также с учетом требований СНиП 2.05.03-84 и СНиП 2.06.06-85 соответственно.

3.7. При расчете свай всех видов по прочности материала сваю следует рассматривать как стержень, жестко защемленный в грунте в сечении, расположенном от подошвы ростверка на расстоянии определяемом по формуле

где — длина участка сваи от подошвы высокого ростверка до уровня планировки грунта, м;

— коэффициент деформации, 1/м, определяемый по рекомендуемому приложению 1.

Если для буровых свай и свай-оболочек, заглубленных сквозь толщу нескального грунта и заделанных в скальный грунт, отношение то следует принимать (где h —

глубина погружения сваи или сваи-оболочки, отсчитываемая от ее нижнего конца до уровня планировки грунта при высоком ростверке, подошва которого расположена над грунтом, и до подошвы ростверка при низком ростверке, подошва которого опирается или заглублена в нескальные грунты, за исключением сильносжимаемых, м).

При расчете по прочности материала буроинъекционных свай, прорезающих сильносжимаемые грунты с модулем деформации Е=5000 кПа (50 кгс/ ) и менее, расчетную длину свай на продольный изгиб в зависимости от диаметра свай d следует принимать равной:

при Е = 500-2000 кПа (5-20 кгс/ )

при Е = 2000-5000 кПа (20-50 кгс/ )

В случае, если превышает толщину слоя сильносжимаемого грунта расчетную длину следует принимать равной

3.8. При расчете набивных и буровых свай (кроме свай-столбов и буроопускных свай) по прочности материала расчетное сопротивление бетона следует принимать с учетом коэффициента условий работы согласно указаниям СНиП 2.03.01-84 и коэффициента условий работы, учитывающего влияние способа производства свайных работ:

а) в пылевато-глинистых грунтах, если возможны бурение скважин и бетонирование их насухо без крепления стенок при положении уровня подземных вод в период строительства ниже пяты свай,

б) в грунтах, бурение скважин и бетонирование в которых производятся насухо с применением извлекаемых обсадных труб,

в) в грунтах, бурение скважин и бетонирование в которых осуществляются при наличии в них воды с применением извлекаемых обсадных труб,

г) в грунтах, бурение скважин и бетонирование в которых выполняются под глинистым раствором или под избыточным давлением воды (без обсадных труб),

Примечание. Бетонирование под водой или под глинистым раствором следует производить только методом вертикально перемещаемой трубы (ВПТ) или с помощью бетононасосов.

3.9. Расчеты конструкций свай всех видов следует производить на воздействие нагрузок, передаваемых на них от здания или сооружения, а забивных свай, кроме того, на усилия, возникающие в них от собственного веса при изготовлении, складировании, транспортировании свай, а также при подъеме их на копер за одну точку, удаленную от головы свай на (где — длина сваи).

Усилие в свае (как балке) от воздействия собственного веса следует определять с учетом коэффициента динамичности, равного:

1,5 — при расчете по прочности;

1,25 — при расчете по образованию и раскрытию трещин.

В этих случаях коэффициент надежности по нагрузке к собственному весу сваи принимается равным единице.

3.10. Одиночную сваю в составе фундамента и вне его по несущей способности грунтов основания следует рассчитывать исходя из условия

где — расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании), определяемая в соответствии с указаниями п.3.11;

— расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи и определяемая в соответствии с указаниями разд. 4 и 5.

Коэффициент надежности принимается равным:

1,2 — если несущая способность свай определена по результатам полевых испытаний статической нагрузкой;

1,25 — если несущая способность сваи определена расчетом по результатам статического зондирования грунта, по результатам динамических испытаний сваи, выполненных с учетом упругих деформаций грунта, а также по результатам полевых испытаний грунтов эталонной сваей или сваей-зондом;

1,4 — если несущая способность сваи определена расчетом, в том числе по результатам динамических испытаний свай, выполненных без учета упругих деформаций грунта;

1,4 (1,25)* — для фундаментов опор мостов при низком ростверке, висячих сваях и сваях-стойках, при высоком ростверке — только при сваях-стойках, воспринимающих сжимающую нагрузку, независимо от числа свай в фундаменте;

* В скобках даны значения в случае, когда несущая способность сваи определена по результатам полевых испытаний статической нагрузкой или расчетом по результатам статического зондирования грунтов.

при высоком или низком ростверке, подошва которого опирается на сильносжимаемый грунт, и висячих сваях, воспринимающих сжимающую нагрузку, а также при любом виде ростверка и висячих сваях и сваях-стойках, воспринимающих выдергивающую нагрузку, принимается в зависимости от числа свай в фундаменте:

при 21 свае и более . 1,4 (1,25)

от 11 до 20 свай . 1,55 (1,4)

для фундаментов из одиночной сваи под колонну при нагрузке на забивную сваю квадратного сечения более 600 кН (60 тс) и набивную сваю — более 2500 кН (250 тс) значение коэффициента следует принимать равным 1,4, если несущая способность сваи определена по результатам испытаний статической нагрузкой, и 1,6, если несущая способность сваи определена другими способами;

— для сплошных свайных полей жестких сооружений с предельной осадкой 30 см и более (при числе свай более 100), если несущая способность сваи определена по результатам статических испытаний.

Примечания: 1. При расчете свай всех видов как на вдавливающие, так и на выдергивающие нагрузки продольное усилие, возникающее в свае от расчетной нагрузки N, следует определять с учетом собственного веса сваи, принимаемого с коэффициентом надежности по нагрузке, увеличивающим расчетное усилие.

2. Если расчет свайных фундаментов производится с учетом ветровых и крановых нагрузок, то воспринимаемую крайними сваями расчетную нагрузку допускается повышать на 20% (кроме фундаментов опор линий электропередачи).

Если сваи фундамента опоры моста в направлении действия внешних нагрузок образуют один или несколько рядов, то при учете (совместном или раздельном) нагрузок от торможения, давления ветра, льда и навала судов, воспринимаемых наиболее нагруженной сваей, расчетную нагрузку допускается повышать на 10% при четырех сваях в ряду и на 20 % при восьми сваях и более. При промежуточном числе свай процент повышения расчетной нагрузки определяется интерполяцией.

3.11. Расчетную нагрузку на сваю N, кН (тс), следует определять, рассматривая фундамент как рамную конструкцию, воспринимающую вертикальные и горизонтальные нагрузки и изгибающие моменты.

Для фундаментов с вертикальными сваями расчетную нагрузку на сваю допускается определять по формуле

где — расчетная сжимающая сила, кН (тc);

— расчетные изгибающие моменты, кНм (тcм), относительно главных центральных осей х и у плана свай в плоскости подошвы ростверка;

n — число свай в фундаменте;

— расстояния от главных осей до оси каждой сваи, м;

х, у — расстояния от главных осей до оси каждой сваи, для которой вычисляется расчетная нагрузка, м.

3.12. Горизонтальную нагрузку, действующую на фундамент с вертикальными сваями одинакового поперечного сечения, допускается принимать равномерно распределенной между всеми сваями.

3.13. Проверка устойчивости свайного фундамента и его основания должна производиться в соответствии с требованиями СНиП 2.02.01-83 с учетом действия дополнительных горизонтальных реакций от свай, приложенных к сдвигаемой части грунта.

3.14. Сваи и свайные фундаменты следует рассчитывать по прочности материала и производить проверку устойчивости фундаментов при действии сил морозного пучения, если основание сложено пучинистыми грунтами.

3.15. Расчет свай и свайных фундаментов по деформациям следует производить исходя из условия

где — совместная деформация сваи, свайного фундамента и сооружения (осадка, перемещение, относительная разность осадок свай, свайных фундаментов и т.п.), определяемая расчетом по указаниям пп. 3.3, 3.4, разд. 6 и рекомендуемого приложения 1;

— предельное значение совместной деформации основания сваи, свайного фундамента и сооружения, устанавливаемое по указаниям СНиП 2.02.01-83, а для мостов — СНиП 2.05.03-84.

4. РАСЧЕТ НЕСУЩЕЙ СПОСОБНОСТИ СВАЙ

4.1. Несущую способность кН (тc), забивной сваи, сваи-оболочки, набивной и буровой свай, опирающихся на скальный грунт, а также забивной сваи, опирающейся на малосжимаемый грунт (см. примечание к п.2.2), следует определять по формуле

A — площадь опирания на грунт сваи, , принимаемая для свай сплошного сечения равной площади поперечного сечения, а для свай полых круглого сечения и свай-оболочек — равной площади поперечного сечения нетто при отсутствии заполнения их полости бетоном и равной площади поперечного сечения брутто при заполнении этой полости бетоном на высоту не менее трех ее диаметров.

Расчетное сопротивление грунта R под нижним концом сваи-стойки, кПа (тс/ ), следует принимать:

а) для всех видов забивных свай, опирающихся на скальные и малосжимаемые грунты, R = 20 000 кПа (2000 тс/ );

б) для набивных и буровых свай и свай-оболочек, заполняемых бетоном и заделанных в невыветрелый скальный грунт (без слабых прослоек) не менее чем на 0,5 м, — по формуле

где — нормативное значение предела прочности на одноосное сжатие скального грунта в водонасыщенном состоянии, кПа (тс/ ).

— коэффициент надежности по грунту, принимаемый

— расчетная глубина заделки набивной и буровой свай и сваи оболочки в скальный грунт, м;

— наружный диаметр заделанной в скальный грунт части набивной и буровой свай и сваи-оболочки, м;

в) для свай-оболочек, равномерно опираемых на поверхность невыветрелого скального грунта, прикрытого слоем нескальных неразмываемых грунтов толщиной не менее трех диаметров сваи-оболочки, — по формуле

где — то же, что в формуле (6).

Примечание. При наличии в основании набивных, буровых свай и свай-оболочек выветрелых, а также размягчаемых скальных грунтов их предел прочности на одноосное сжатие следует принимать по результатам испытаний штампами или по результатам испытаний свай и свай-оболочек статической нагрузкой.

Висячие забивные сваи всех видов и сваи-оболочки,

погружаемые без выемки грунта

4.2. Несущую способность кН (тс), висячей забивной сваи и сваи-оболочки, погружаемой без выемки грунта, работающих на сжимающую нагрузку, следует определять как сумму сил расчетных сопротивлений грунтов основания под нижним концом сваи и на ее боковой поверхности по формуле

где — коэффициент условий работы сваи в грунте, принимаемый

R — расчетное сопротивление грунта под нижним концом сваи, кПа (тс/ ), принимаемое по табл.1;

A — площадь опирания на грунт сваи, , принимаемая по площади поперечного сечения сваи брутто или по площади поперечного сечения камуфлетного уширения по его наибольшему диаметру, или по площади сваи-оболочки нетто;

u — наружный периметр поперечного сечения сваи, м;

— расчетное сопротивление i-го слоя грунта основания на боковой поверхности сваи, кПа (тс/ ), принимаемое по табл.2;

— толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;

— коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта и принимаемые по табл. 3.

В формуле (8) суммировать сопротивления грунта следует по всем слоям грунта, пройденным сваей, за исключением случаев, когда проектом предусматривается планировка территории срезкой или возможен размыв грунта. В этих случаях следует суммировать сопротивления всех слоев грунта, расположенных соответственно ниже уровня планировки (срезки) и дна водоема после его местного размыва при расчетном паводке.

СП 24.13330.2011 Свайные фундаменты (Актуализированная редакция СНиП 2.02.03-85)

СВЕДЕНИЯ О СВОДЕ ПРАВИЛ:

  • ИСПОЛНИТЕЛИ — Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им. Н.М. Герсеванова» — институт ОАО «НИЦ «Строительство» (НИИОСП им. Н.М. Герсеванова)
  • ВНЕСЕН Техническим комитетом по стандартизации (ТК 465) «Строительство»
  • ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики
  • УТВЕРЖДЕН приказом Министерства регионального развития Российской Федерации (Минрегион России) от 27 декабря 2010 г. № 786 и введен в действие с 20 мая 2011 г.
  • ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 24.13330.2010

ВВЕДЕНИЕ

Настоящий свод правил устанавливает требования к проектированию фундаментов из разных типов свай в различных инженерно-геологических условиях и при любых видах строительства.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий свод правил распространяется на проектирование свайных фундаментов вновь строящихся и реконструируемых зданий и сооружений.

Свод правил не распространяется на проектирование свайных фундаментов сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов машин с динамическими нагрузками, а также опор морских нефтепромысловых и других сооружений, возводимых на континентальном шельфе.

«СВОД ПРАВИЛ СВАЙНЫЕ ФУНДАМЕНТЫ Pile foundations Актуализированная редакция СНиП 2.02.03-85 Текст Сравнения СП 24.13330.2011 со СНиП 2.02.03-85 см. по ссылке. — Примечание изготовителя . »

СВОД ПРАВИЛ

СВАЙНЫЕ ФУНДАМЕНТЫ

СНиП 2.02.

Текст Сравнения СП 24.13330.2011 со СНиП 2.02.

03-85 см. по ссылке.

— Примечание изготовителя базы данных.

Дата введения 2011-05-2

Предисловие Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила разработки — постановлением Правительства Российской Федерации от 19 ноября 2008 г. N 858 «О порядке разработки и утверждения сводов правил».

Сведения о своде правил 1 ИСПОЛНИТЕЛИ — Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова — институт ОАО «НИЦ «Строительство» (НИИОСП им.Н.М.Герсеванова) 2 ВНЕСЕН Техническим комитетом по стандартизации (ТК 465) «Строительство» 3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики 4 УТВЕРЖДЕН приказом Министерства регионального развития Российской Федерации (Минрегион России) от 27 декабря 2010 г. N 786 и введен в действие с 20 мая 2011 г.

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 24.13330.2010 Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты».

Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте разработчика (Минрегион России) в сети Интернет ВНЕСЕНЫ опечатки, опубликованные в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 6, 2011 г.

Опечатки внесены изготовителем базы данных Введение Настоящий свод правил устанавливает требования к проектированию фундаментов из разных типов свай в различных инженерно-геологических условиях и при любых видах строительства.

Разработан НИИОСП им.Н.М.Герсеванова — институтом ОАО «НИЦ «Строительство»: д-ра техн. наук Б.В.Бахолдин, В.П.Петрухин и канд. техн.

наук И.В.Колыбин — руководители темы; д-ра техн. наук: А.А.Григорян, Е.А.Сорочан, Л.Р.Ставницер; кандидаты техн. наук: А.Г.Алексеев, В.А.Барвашов, С.Г.Безволев, Г.И.Бондаренко, В.Г.Буданов, A.M.Дзагов, О.И.Игнатова, В.Е.Конаш, В.В.Михеев, Д.Е.Разводовский, В.Г.Федоровский, О.А.Шулятьев, П.И.Ястребов, инженеры Л.П.Чащихина, Е.А.Парфенов, при участии инженера Н.П.Пивника.

1 Область применения Настоящий свод правил распространяется на проектирование свайных фундаментов вновь строящихся и реконструируемых зданий и сооружений (далее — сооружений).

2 Нормативные ссылки

В настоящем СП приведены ссылки на следующие документы:

Федеральный закон от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании» Федеральный закон от 30 декабря 2009 г. N 384-ФЗ «Технический регламент о безопасности зданий и сооружений» СП 14.13330.2011 «СНиП II-7-81* Строительство в сейсмических районах» СП 16.13330.2011 «СНиП II-23-81* Стальные конструкции» СП 64.13330.2011 «СНиП II-25-80 Деревянные конструкции» СП 20.13330.2011 «СНиП 2.01.07-85* Нагрузки и воздействия» СП 21.13330.2010 «СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах» _________________

Действует СП 21.13330.2012, здесь и далее по тексту. — Примечание изготовителя базы данных.

СП 22.13330.2011 «СНиП 2.02.01-83* Основания зданий и сооружений» СП 28.13330.2010 «СНиП 2.03.11-85 Защита строительных конструкций от коррозии» ________________

Действует СП 28.13330.2012, здесь и далее по тексту. — Примечание изготовителя базы данных.

СП 35.13330.2011 «СНиП 2.05.03-84* Мосты и трубы» СП 38.13330.2010 «СНиП 2.06.04-82* Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)» _______________

Действует СП 38.13330.2012, здесь и далее по тексту. — Примечание изготовителя базы данных.

СП 40.13330.2010 «СНиП 2.06.06-85 Плотины бетонные и железобетонные» ________________

Действует СП 40.13330.2012, здесь и далее по тексту. — Примечание изготовителя базы данных.

СП 41.13330.2010 «СНиП 2.06.08-87 Бетонные и железобетонные конструкции гидротехнических сооружений» _______________

Действует СП 41.13330.2012, здесь и далее по тексту. — Примечание изготовителя базы данных.

СНиП 3.04.

01-87 Изоляционные и отделочные покрытия СП 47.13330.2010 «СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения» _______________

Действует СП 47.13330.2012, здесь и далее по тексту. — Примечание изготовителя базы данных.

СНиП 23-01-99* Строительная климатология СП 58.13330.2010 «СНиП 33-01-2003 Гидротехнические сооружения.

Основные положения» ________________

Действует СП 58.13330.2012, здесь и далее по тексту. — Примечание изготовителя базы данных.

СП 63.13330.2010 «СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения» _______________

Действует СП 63.13330.2012, здесь и далее по тексту. — Примечание изготовителя базы данных.

ГОСТ 5686-94 Грунты. Методы полевых испытаний сваями ГОСТ 9463-88 Лесоматериалы круглые хвойных пород. Технические условия ГОСТ 12248-96 Грунты. Методы лабораторного определения характеристик прочности и деформируемости ГОСТ Р 53231-2008 Бетоны. Правила контроля и оценки прочности ГОСТ 19804-91 Сваи железобетонные. Технические условия ГОСТ 19804.6-83 Сваи полые круглого сечения и сваи-оболочки железобетонные составные с ненапрягаемой арматурой. Конструкция и размеры ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием ГОСТ 20276-99 Грунты. Методы полевого определения характеристик прочности и деформируемости ГОСТ 20522-96 Грунты. Методы статистической обработки результатов испытаний ГОСТ 25100-95 Грунты. Классификация ГОСТ 26633-91 Бетоны тяжелые и мелкозернистые ГОСТ 27751-88 Надежность строительных конструкций и оснований.

Основные положения по расчету ГОСТ Р 53778-2010 Здания и сооружения. Правила обследования и мониторинга технического состояния Примечание — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим сводом правил следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения Термины с соответствующими определениями, используемые в настоящем СП, приведены в приложении А.

Наименования грунтов оснований зданий и сооружений приняты в соответствии с ГОСТ 25100.

4 Общие положения

4.1 Свайные фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия их эксплуатации;

г) действующих на фундаменты нагрузок;

д) условий существующей застройки и влияния на нее нового строительства;

е) экологических требований;

ж) технико-экономического сравнения возможных вариантов проектных решений.

4.2 При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

4.3 При проектировании следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических, гидрогеологических и экологических условиях.

Данные о климатических условиях района строительства должны приниматься в соответствии со СНиП 23-01.

4.4 Работы по проектированию свайных фундаментов следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1).

4.5 При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751.

4.6 Свайные фундаменты следует проектировать на основе результатов инженерных изысканий, выполненных в соответствии с требованиями СП 47.13330, СП 11-104 [2] и раздела 5 настоящего СП.

Выполненные инженерные изыскания должны обеспечить не только изучение инженерно-геологических условий нового строительства, но и получение необходимых данных для проверки влияния устройства свайных фундаментов на существующие сооружения и окружающую среду, а также для проектирования в случае необходимости усиления оснований и фундаментов существующих сооружений.

Проектирование свайных фундаментов без соответствующих достаточных данных инженерно-геологических изысканий не допускается.

4.7 При использовании для строительства вблизи существующих сооружений свай необходимо производить оценку влияния динамических воздействий на конструкции существующих сооружений, а также на находящиеся в них чувствительные к колебаниям машины, приборы и оборудование и в необходимых случаях предусматривать измерения параметров колебаний грунта, сооружений, а также подземных коммуникаций при опытном погружении и устройстве свай.

4.8 В проектах свайных фундаментов необходимо предусматривать проведение натурных измерений (мониторинг). Состав, объем и методы мониторинга устанавливают в зависимости от уровня ответственности сооружения и сложности инженерно-геологических условий (СП 22.13330).

Натурные измерения деформаций оснований и фундаментов должны предусматриваться при применении новых или недостаточно изученных конструкций сооружений или фундаментов, а также в случае если в задании на проектирование имеются специальные требования по проведению натурных измерений.

4.9 Свайные фундаменты, предназначенные для эксплуатации в условиях агрессивной среды, следует проектировать с учетом требований СП 28.13330, а деревянные конструкции свайных фундаментов — с учетом требований по защите их от гниения, разрушения и поражения древоточцами.

4.10 При проектировании и возведении свайных фундаментов из монолитного и сборного бетона или железобетона следует дополнительно руководствоваться СП 63.13330, СП 28.13330 и СНиП 3.04.01, а также соблюдать требования нормативных документов по устройству оснований и фундаментов, геодезическим работам, технике безопасности, правилам пожарной безопасности при производстве строительно-монтажных работ и охране окружающей среды.

5 Требования к инженерно-геологическим испытаниям

5.1 Результаты инженерных изысканий должны включать информацию о геологии, геоморфологии, сейсмичности, а также содержать все необходимые данные для выбора типа фундамента, определения вида свай и их размеров, расчетной нагрузки, допускаемой на сваю, и проведения расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических, гидрогеологических и экологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению.

5.2 Изыскания для свайных фундаментов в общем случае включают следующий комплекс работ:

бурение скважин с отбором образцов и описанием проходимых грунтов;

лабораторные исследования физико-механических свойств грунтов и подземных вод;

зондирование грунтов — статическое и динамическое;

прессиометрические испытания грунтов;

испытания грунтов штампами (статическими нагрузками);

испытания грунтов эталонными и (или) натурными сваями;

опытные работы по исследованию влияния устройства свайных фундаментов на окружающую среду, в том числе на расположенные вблизи сооружения (по специальному заданию проектной организации).

5.3 Обязательными видами работ, независимо от уровня ответственности объектов строительства и типов свайных фундаментов, являются бурение скважин, лабораторные исследования и статическое или динамическое зондирование. При этом наиболее предпочтительным методом зондирования является статическое, в процессе которого помимо показателей статического зондирования грунтов определяют их плотность и влажность с помощью радиоактивного каротажа (ГОСТ 19912).

5.4 Для объектов повышенного и нормального уровней ответственности указанные в 5.2 и 5.3 работы рекомендуется дополнять испытаниями грунтов прессиометрами и штампами (ГОСТ 20276), эталонными и натурными сваями (ГОСТ 5686) в соответствии с рекомендациями приложения Б. При этом необходимо учитывать категории сложности грунтовых условий, устанавливаемые в зависимости от однородности грунтов по условиям залегания и свойствам (см. приложение Б).

При строительстве высотных зданий повышенного уровня ответственности и зданий с глубокой подземной частью в состав работ при изысканиях следует включать геофизические исследования для уточнения геологического строения массива грунтов между скважинами, определения толщины прослоев слабых грунтов, глубины водоупоров, направления и скорости движения подземных вод, а в карстоопасных районах — глубины залегания скальных и карстующих пород, их трещиноватости и закарстованности.

5.5 При применении свай новых конструкций (по специальному заданию проектной организации) в состав работ следует включать опытные погружения свай с целью уточнения назначенных при проектировании размеров и режима погружения, а также натурные испытания этих свай статическими нагрузками.

При применении комбинированных свайно-плитных фундаментов в состав работ следует включать испытания грунтов штампами и натурными сваями.

5.6 При передаче на сваи выдергивающих, горизонтальных или знакопеременных нагрузок необходимость проведения опытных работ должна определяться в каждом конкретном случае с назначением объемов работ с учетом доминирующего воздействия.

5.7 Несущую способность свай по результатам полевых испытаний грунтов натурной и эталонной сваями и статическим зондированием следует определять в соответствии с подразделом 7.3.

5.8 Испытания грунтов сваями, штампами и прессиометрами проводят, как правило, на опытных участках, выбираемых по результатам бурения скважин (и зондирования) и располагаемых в местах наиболее характерных по грунтовым условиям, в зонах наиболее загруженных фундаментов, а также в местах, где возможность погружения свай по грунтовым условиям вызывает сомнение.

Испытания грунтов статическими нагрузками целесообразно проводить в основном винтовыми штампами площадью 600 см в скважинах с целью получения модуля деформации и уточнения для исследуемой площадки переходных коэффициентов в рекомендуемых действующими нормативными документами зависимостях для определения модуля деформации грунтов по данным зондирования и прессиометрических испытаний.

5.9 Объем изысканий для свайных фундаментов рекомендуется назначать в соответствии с приложением Б в зависимости от уровня ответственности объекта строительства и категории сложности грунтовых условий.

При изучении разновидностей грунтов, встречающихся на площадке строительства в пределах исследуемой глубины, особое внимание должно быть обращено на наличие, глубину залегания и толщину слабых грунтов (рыхлых песков, слабых глинистых грунтов, органоминеральных и органических грунтов). Наличие указанных грунтов влияет на определение вида и длины свай, расположение стыков составных свай, характер сопряжения свайного ростверка со сваями, выбор типа сваебойного оборудования. Неблагоприятные свойства указанных грунтов необходимо также учитывать при наличии динамических и сейсмических воздействий.

5.10 Размещение инженерно-геологических выработок (скважин, точек зондирования, мест испытаний грунтов) должно производиться с таким расчетом, чтобы они располагались в пределах контура проектируемого здания либо при одинаковых грунтовых условиях не далее 5 м от него, а в случаях применения свай в качестве ограждающей конструкции котлована — на расстоянии не более 2 м от их оси.

5.11 Глубина инженерно-геологических выработок должна быть не менее чем на 5 м ниже проектируемой глубины заложения нижних концов свай при их рядовом расположении и нагрузках на куст свай до 3 МН и на 10 м ниже — при свайных полях размером до 10×10 м и при нагрузках на куст более 3 МН. При свайных полях размером более 10×10 м и применении плитно-свайных фундаментов глубина выработок должна превышать предполагаемое заглубление свай не менее чем на глубину сжимаемой толщи, но не менее половины ширины свайного поля или плиты, и не менее чем на 15 м.

При наличии на строительной площадке слоев грунтов со специфическими свойствами (просадочных, набухающих, слабых глинистых, органоминеральных и органических грунтов, рыхлых песков и техногенных грунтов) глубину выработок определяют с учетом необходимости их проходки на всю толщу слоя для установления глубины залегания подстилающих прочных грунтов и определения их характеристик.

5.12 При изысканиях для свайных фундаментов должны быть определены физические, прочностные и деформационные характеристики, необходимые для расчетов свайных фундаментов по предельным состояниям (раздел 7).

Количество определений характеристик грунтов для каждого инженерногеологического элемента должно быть достаточным для их статистической обработки в соответствии с ГОСТ 20522.

5.13 Для песков, учитывая затруднения с отбором образцов ненарушенной структуры, в качестве основного метода определения их плотности и прочностных характеристик для объектов всех уровней ответственности следует предусматривать зондирование — статическое или динамическое.

Зондирование является основным методом определения модуля деформации как песков, так и глинистых грунтов для объектов III уровня ответственности и одним из методов определения модуля деформации (в сочетании с прессиометрическими и штамповыми испытаниями) для объектов I и II уровней ответственности.

5.14 При применении свайных фундаментов для усиления оснований реконструируемых зданий и сооружений при инженерно-геологических изысканиях дополнительно должны быть выполнены работы по обследованию оснований фундаментов и инструментальные геодезические наблюдения за перемещениями конструкций зданий.

Кроме того, должно быть установлено соответствие новых материалов изысканий архивным данным (если они имеются) и составлено заключение об изменении инженерно-геологических и гидрогеологических условий, вызванных строительством и эксплуатацией реконструируемого сооружения.

Примечания 1 Обследование технического состояния конструкций фундаментов и здания должно выполняться по заданию заказчика специализированной организацией.

2 Оценку длины существующих свай в фундаментах реконструируемого здания целесообразно осуществлять с использованием приборов радарного типа.

5.15 Проведению обследования оснований фундаментов должны предшествовать:

визуальная оценка состояния верхней конструкции здания, в том числе фиксация имеющихся трещин, их размера и характера, установка маяков на трещины;

выявление режима эксплуатации здания с целью установления факторов, отрицательно действующих на основание;

установление наличия подземных коммуникаций и дренажных систем и их состояния;

ознакомление с архивными материалами инженерно-геологических изысканий, проводившихся на площадке реконструкции.

Проведение геодезической съемки положения конструкций реконструируемого здания и цоколей необходимо для оценки возможного возникновения неравномерных осадок (кренов, прогибов, относительных смешений).

При обследовании реконструируемых зданий следует также учитывать состояние окружающей территории и близко расположенных зданий.

5.16 Обследование оснований фундаментов и состояния фундаментных конструкций производят путем проходки шурфов с отбором монолитов грунтов непосредственно из-под подошвы фундаментов и стенок шурфа. Ниже глубины шурфов инженерно-геологическое строение, гидрогеологические условия и свойства грунтов должны быть исследованы бурением и зондированием, при этом буровые скважины и точки зондирования размещают по периметру здания или сооружения на расстоянии от них не более 5 м.

5.17 При усилении оснований реконструируемых сооружений подводкой забивных, вдавливаемых, буронабивных или буроинъекционных свай глубина бурения и зондирования должна приниматься по указаниям 5.11.

5.18 Технический отчет по результатам инженерно-геологических изысканий для проектирования свайных фундаментов должен составляться в соответствии с СП 47.13330 и СП 11-105 [3].

Все характеристики грунтов должны приводиться в отчете с учетом прогноза возможных изменений (в процессе строительства и эксплуатации здания) инженерно-геологических и гидрогеологических условий площадки.

При наличии натурных испытаний свай статической или динамической нагрузкой должны приводиться их результаты. Результаты зондирования должны включать данные о несущей способности свай.

При наличии на площадке подземных вод с агрессивными свойствами необходимо приводить рекомендации по антикоррозийной защите свай.

В случаях выявления на площадке строительства прослоев или толщи специфических грунтов и опасных геологических процессов (карстовосуффозионных, оползневых и др.) необходимо привести данные об их распространении и интенсивности проявления.

5.19 При инженерно-геологических изысканиях и исследованиях свойств грунтов для проектирования и устройства свайных фундаментов необходимо также учитывать дополнительные требования, изложенные в разделах 9-15 настоящего СП.

6.1 По способу заглубления в грунт различают следующие виды свай:

а) предварительно изготовленные забивные и вдавливаемые (в дальнейшем забивные) железобетонные, деревянные и стальные, погружаемые в грунт без его разбуривания или в лидерные скважины с помощью молотов, вибропогружателей, вибровдавливающих, виброударных и вдавливающих устройств, а также железобетонные сваи-оболочки диаметром до 0,8 м, заглубляемые вибропогружателями без выемки или с частичной выемкой грунта и не заполняемые бетонной смесью (см. ГОСТ 19804);

б) сваи-оболочки железобетонные, погружаемые вибропогружателями с выемкой грунта из их полости и заполняемые частично или полностью бетонной смесью;

в) набивные бетонные и железобетонные, устраиваемые в грунте путем укладки бетонной смеси в скважины, образованные в результате принудительного вытеснения — отжатия грунта;

д) винтовые сваи, состоящие из металлической винтовой лопасти и трубчатого металлического ствола со значительно меньшей по сравнению с лопастью площадью поперечного сечения, погружаемые в грунт путем ее завинчивания в сочетании с вдавливанием.

6.2 По условиям взаимодействия с грунтом сваи следует подразделять на сваи-стойки и висячие (сваи трения).

К сваям-стойкам следует относить сваи всех видов, опирающиеся на скальные грунты, а забивные сваи, кроме того, — на малосжимаемые грунты.

Силы сопротивления грунтов, за исключением отрицательных (негативных) сил трения, на боковой поверхности свай-стоек в расчетах их несущей способности по грунту основания на сжимающую нагрузку не должны учитываться.

К висячим сваям (сваям трения) следует относить сваи всех видов, опирающиеся на сжимаемые грунты и передающие нагрузку на грунты основания боковой поверхностью и нижним концом.

Примечание — К малосжимаемым грунтам относятся крупнообломочные грунты с песчаным заполнителем средней плотности и плотным, а также глины твердой консистенции в водонасыщенном состоянии с модулем деформации 50 МПа.

6.3 Забивные железобетонные сваи размером поперечного сечения до 0,8 м включительно и сваи-оболочки диаметром 1 м и более следует подразделять:

а) по способу армирования — на сваи и сваи-оболочки с ненапрягаемой продольной арматурой с поперечным армированием и на предварительно напряженные со стержневой или проволочной продольной арматурой (из высокопрочной проволоки и арматурных канатов) с поперечным армированием и без него;

б) по форме поперечного сечения — на сваи квадратные, прямоугольные, таврового и двутаврового сечений, квадратные с круглой полостью, полые круглого сечения;

в) по форме продольного сечения — на призматические, цилиндрические, с наклонными боковыми гранями (пирамидальные, трапецеидальные);

г) по конструктивным особенностям — на сваи цельные и составные (из отдельных секций);

д) по конструкции нижнего конца — на сваи с заостренным или плоским нижним концом, или объемным уширением (булавовидные) и на полые сваи с закрытым или открытым нижним концом или с камуфлетной пятой.

Примечание — Сваи забивные с камуфлетной пятой устраивают путем забивки полых свай круглого сечения с закрытым стальным полым наконечником с последующим заполнением полости сваи и наконечника бетонной смесью и устройством с помощью взрыва камуфлетной пяты в пределах наконечника. В проектах таких свай следует предусматривать указания о соблюдении правил производства буровзрывных работ.

6.4 Набивные сваи по способу устройства подразделяют на:

а) набивные, устраиваемые путем погружения (забивкой, вдавливанием или завинчиванием) инвентарных труб, нижний конец которых закрыт оставляемым в грунте башмаком (наконечником) или бетонной пробкой, с последующим извлечением этих труб по мере заполнения скважин бетонной смесью, в том числе после устройства уширения из втрамбованной сухой бетонной смеси;

в) набивные в выштампованном ложе, устраиваемые путем выштамповки в грунте скважин пирамидальной или конусной формы с последующим заполнением их бетонной смесью.

6.5 Буровые сваи по способу устройства подразделяют на:

а) буронабивные сплошного сечения с уширениями и без них, бетонируемые в скважинах, пробуренных в глинистых грунтах выше уровня подземных вод без крепления стенок скважин, а в любых грунтах ниже уровня подземных вод — с закреплением стенок скважин глинистым раствором или инвентарными извлекаемыми обсадными трубами;

б) буронабивные с применением технологии непрерывного полого шнека;

в) баретты — буровые сваи, изготавливаемые технологическим оборудованием типа плоский грейфер или грунтовая фреза;

г) буронабивные с камуфлетной пятой, устраиваемые путем бурения скважин с последующим образованием уширения взрывом (в том числе электрохимическим) и заполнением скважин бетонной смесью;

д) буроинъекционные диаметром 0,15-0,35 м, устраиваемые в пробуренных скважинах путем нагнетания (инъекции) в них мелкозернистой бетонной смеси, а также устраиваемые полым шнеком;

е) буроинъекционные диаметром 0,15-0,35 м, выполняемые с уплотнением окружающего грунта путем обработки скважины по разрядно-импульсной технологии (серией разрядов импульсов тока высокого напряжения — РИТ);

ж) сваи-столбы, устраиваемые путем бурения скважин с уширением или без него, укладки в них омоноличивающего цементно-песчаного раствора и опускания в скважины цилиндрических или призматических элементов сплошного сечения со сторонами или диаметром 0,8 м и более;

з) буроопускные сваи с камуфлетной пятой, отличающиеся от буронабивных свай с камуфлетной пятой (см. подпункт «г») тем, что после образования и заполнения камуфлетного уширения в скважину опускают железобетонную сваю.

6.6 Применение свай с оставляемыми обсадными трубами допускается только в случаях, когда исключена возможность применения других решений конструкции фундаментов (при устройстве буронабивных свай в пластах грунтов со скоростью фильтрационного потока более 200 м/сут, при применении буронабивных свай для закрепления действующих оползневых склонов и в других обоснованных случаях).

При устройстве буронабивных свай в водонасыщенных глинистых грунтах для крепления стенок скважин допускается использовать избыточное давление воды не менее 0,5 атм при условии удаления места проведения работ от существующих объектов не менее 25 м (указанное требование не относится к случаю устройства свай с бурением под защитой инвентарных обсадных труб).

6.7 Железобетонные и бетонные сваи следует проектировать из тяжелого бетона по ГОСТ 26633.

Для нестандартизованных забивных железобетонных свай, а также для набивных и буровых свай необходимо предусматривать бетон класса не ниже В15, для забивных железобетонных свай с напрягаемой арматурой — не ниже В22,5.

6.8 Железобетонные ростверки свайных фундаментов следует проектировать из тяжелого бетона класса не ниже: для монолитных — В15, для сборных — В20.

Для опор мостов класс бетона свай и свайных ростверков следует назначать в соответствии с требованиями СП 35.13330, а для гидротехнических сооружений — СП 40.13330 и СП 41.13330.

6.9 Бетон для замоноличивания железобетонных колонн в стаканах свайных ростверков, а также оголовков свай при сборных ленточных ростверках следует предусматривать в соответствии с требованиями СП 63.13330, но не ниже класса В15.

Примечание — Для опор мостов и гидротехнических сооружений класс бетона для замоноличивания сборных элементов свайных фундаментов должен быть на ступень выше класса бетона соединяемых сборных элементов.

6.10 Марки бетона по морозостойкости и водонепроницаемости свай и свайных ростверков следует назначать, руководствуясь ГОСТ 19804.6, СП 63.13330, для мостов и гидротехнических сооружений — соответственно СП

35.13330 и СП 40.13330.

6.11 Деревянные сваи должны быть изготовлены из бревен хвойных пород (сосны, ели, лиственницы, пихты), соответствующих требованиям ГОСТ 9463, диаметром 22-34 см и длиной 6,5 и 8,5 м. Естественная коничность (сбег) бревен сохраняется.

7 Проектирование свайных фундаментов

7.1 Основные указания по расчету 7.1.1 Расчет свайных фундаментов и их оснований должен быть выполнен в соответствии с ГОСТ 27751 по предельным состояниям:

а) по прочности материала свай и свайных ростверков;

б) по несущей способности (предельному сопротивлению) грунта основания свай;

в) по потере общей устойчивости оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.), в том числе сейсмические, если сооружение расположено на откосе или вблизи него или если основание сложено крутопадающими слоями грунта. Этот расчет следует производить с учетом конструктивных мероприятий, предусмотренных для предотвращения смещения проектируемого фундамента;

а) по осадкам оснований свай и свайных фундаментов от вертикальных нагрузок (см. подраздел 7.4);

б) по перемещениям свай совместно с грунтом оснований от действия горизонтальных нагрузок и моментов (см. приложение В);

в) по образованию или чрезмерному раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.

7.1.2 В расчетах оснований свайных фундаментов следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние подземных вод и их режима на физикомеханические свойства грунтов и др.).

Сооружение и его основание должны рассматриваться совместно, т.е.

должно учитываться взаимодействие сооружения со сжимаемым основанием.

Расчетная схема системы «сооружение-основание» или «фундаментоснование» должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их изменения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов, развитие областей пластических деформаций под фундаментом.

Расчет свайных фундаментов должен проводиться с построением математических моделей, описывающих механическое поведение свайных фундаментов для первого или второго предельного состояния. Расчетная модель может представляться в аналитическом или численном виде. При проведении расчетов несущей способности и осадок одиночных свай предпочтение следует отдавать табулированным или аналитическим решениям, приведенным в настоящем СП. Расчеты большеразмерных свайных кустов и комбинированных свайно-плитных фундаментов (КСП) следует, преимущественно, проводить численно.

При проектировании свайных фундаментов следует учитывать жесткость конструкций, объединяющих головы свай, что должно отражаться в расчетной модели. При этом при составлении расчетной модели должны также учитываться:

грунтовые условия площадки строительства;

особенности устройства свай;

наличие шлама под нижним концом свай.

При проведении численных расчетов расчетная схема системы «ростверк

— сваи — грунтовое основание» должна выбираться с учетом наиболее существенных факторов, в конечном счете определяющих сопротивление указанной системы. Необходимо учитывать продолжительность и возможное изменение во времени нагружения свай и свайных фундаментов.

Расчетная модель свайных фундаментов должна строиться таким образом, чтобы содержать погрешность только в сторону запаса надежности проектируемых надземных конструкций. Если заранее такая погрешность не может быть определена, необходимо проведение вариантных расчетов и определение наиболее неблагоприятных воздействий для надземных конструкций.

При проведении компьютерных расчетов свайных фундаментов следует учитывать возможные неопределенности, связанные с назначением расчетной модели и выбором деформационных и прочностных показателей грунтов основания. Для этого при проведении численных расчетов, определяющих возможное сопротивление одиночных свай, групп свай и свайно-плитных фундаментов, рекомендуется проводить сопоставление результатов расчета отдельных элементов расчетной схемы с аналитическими решениями, а также выполнять сопоставление альтернативных результатов расчета по различным геотехническим программам.

Прочитайте интересные книги о жизни.

7.1.3 Нагрузки и воздействия, учитываемые в расчетах свайных фундаментов, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок следует принимать в соответствии с требованиями СП 20.13330, СП 22.13330.

7.1.4 Расчет свай, свайных фундаментов и их оснований по несущей способности необходимо выполнять на основные и особые сочетания нагрузок, по деформациям — на основные сочетания.

7.1.5 Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете свайных фундаментов мостов и гидротехнических сооружений следует принимать согласно требованиям СП 35.13330; СП 40.13330; СП 38.13330 и СП 58.13330.

7.1.6 Все расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и грунтов.

Расчетные значения характеристик материалов свай и свайных ростверков следует принимать в соответствии с требованиями СП 63.13330, СП 16.13330, СП 64.13330, СП 35.13330 и СП 40.13330.

Расчетные значения характеристик грунтов следует определять в соответствии с ГОСТ 20522, расчетные значения коэффициентов постели грунт а, окружающего сваю, следует принимать в соответствии с приложением В.

Расчетные сопротивления грунта под нижним концом сваи и на боковой поверхности сваи следует определять по указаниям подраздела 7.2.

При наличии результатов полевых исследований, проведенных в соответствии с требованиями подраздела 7.3, несущую способность грунта основания свай следует определять с учетом данных статического зондирования грунтов, испытаний грунтов эталонными сваями или по данным динамических испытаний свай. В случае проведения испытаний свай статической нагрузкой несущую способность грунта основания сваи следует принимать по результатам этих испытаний, учитывая рекомендации подраздела 7.3.

Для объектов, по которым не проводились испытания натурных свай статической нагрузкой, рекомендуется определять несущую способность грунта основания сваи несколькими из возможных способов, указанных в подразделах 7.2 и 7.3, учитывая при этом уровень ответственности сооружения.

7.1.7 Расчет свай и свайных ростверков по прочности материала должен производиться в соответствии с требованиями действующих правил по расчету бетонных, железобетонных, стальных и деревянных конструкций.

Расчет элементов железобетонных конструкций свайных фундаментов по образованию и раскрытию трещин следует производить в соответствии с требованиями СП 63.13330, для мостов и гидротехнических сооружений также с учетом требований СП 35.13330 и СП 40.13330 соответственно.

7.1.8 При расчете свай всех видов по прочности материала сваю допускается рассматривать как стержень, жестко защемленный в грунте в сечении, расположенном от подошвы ростверка на расстоянии, определяемом по формуле

следует принимать (где — глубина погружения сваи или сваиоболочки, отсчитываемая от ее нижнего конца до уровня планировки грунта при высоком ростверке, подошва которого расположена над грунтом, и до подошвы ростверка при низком ростверке, подошва которого опирается или заглублена в нескальные грунты, за исключением сильносжимаемых, м).

При расчете по прочности материала буроинъекционных свай, прорезающих сильносжимаемые грунты с модулем деформации 5 МПа, расчетную длину свай на продольный изгиб в зависимости от диаметра свай следует принимать равной:

при 2 МПа при 2 5 МПа.

В случае если превышает толщину слоя сильносжимаемого грунта, расчетную длину следует принимать равной 2.

7.1.9 При расчете набивных, буровых свай и баретт (кроме свай-столбов и буроопускных свай) по прочности материала расчетное сопротивление бетона следует принимать с понижающим коэффициентом условий работы 0,85, учитывающим бетонирование в узком пространстве скважин и обсадных труб, и дополнительного понижающего коэффициента, учитывающего влияние способа производства свайных работ:

а) в глинистых грунтах, если возможны бурение скважин и бетонирование их насухо без крепления стенок при положении уровня подземных вод в период строительства ниже пяты свай, 1,0;

б) в грунтах, бурение скважин и бетонирование в которых производят насухо с применением извлекаемых обсадных труб или полых шнеков, 0,9;

в) в грунтах, бурение скважин и бетонирование в которых осуществляют при наличии в них воды с применением извлекаемых обсадных труб или полых

г) в грунтах, бурение скважин и бетонирование в которых выполняют под глинистым раствором или под избыточным давлением воды (без обсадных труб), 0,7.

Примечание — Бетонирование свай под водой или под глинистым раствором следует производить только методом вертикально перемещаемой трубы (ВПТ) или с помощью бетононасосов.

7.1.10 Расчеты конструкций свай всех видов следует производить на воздействие нагрузок, передаваемых на них от сооружения, а предварительно изготовленных (забивных) свай, кроме того, на усилия, возникающие в них от собственного веса при изготовлении, складировании, транспортировании свай, а также при подъеме их на копер за одну точку, удаленную от головы свай на 0,3 (где — длина сваи).

При этом усилие в свае от воздействия собственного веса следует определять с учетом коэффициента динамичности, равного:

В этих случаях коэффициент надежности по нагрузке к собственному весу сваи принимают равным единице.

7.1.11 Сваю в составе фундамента и одиночную по несущей способности грунта основания следует рассчитывать исходя из условия, (7.2) гд е — расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании), определяемая в соответствии с 7.1.12;

— несущая способность (предельное сопротивление) грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи и определяемая в соответствии с подразделами 7.2 и 7.3;

— коэффициент условий работы, учитывающий повышение однородности грунтовых условий при применении свайных фундаментов, принимаемый равным 1 при односвайном фундаменте и 1,15 при кустовом расположении свай;

— коэффициент надежности по назначению (ответственности) сооружения, принимаемый равным 1,2; 1,15 и 1,10 соответственно для сооружений I, II и III уровней ответственности;

— коэффициент надежности по грунту, принимаемый равным:

1,2 — если несущая способность сваи определена по результатам полевых испытаний статической нагрузкой;

1,25 — если несущая способность сваи определена расчетом по результатам статического зондирования грунта или по результатам динамических испытаний сваи, выполненных с учетом упругих деформаций грунта, а также по результатам полевых испытаний грунтов эталонной сваей или сваей-зондом;

1,4 (1,25) — для фундаментов опор мостов при низком ростверке, на висячих сваях (сваях трения) и сваях-стойках, а при высоком ростверке только при сваях-стойках, воспринимающих сжимающую нагрузку независимо от числа свай в фундаменте.

Для фундаментов опор мостов и для гидротехнических сооружений при высоком или низком ростверке, подошва которого опирается на сильносжимаемый грунт, и висячих сваях, воспринимающих сжимающую нагрузку, а также для любых сооружений при любом виде ростверка и висячих сваях и сваях-стойках, воспринимающих выдергивающую нагрузку, принимают в зависимости от числа свай в фундаменте:

При 21 свае и более 1,4 (1,25);

Для фундаментов из одиночной сваи под колонну при нагрузке на забивную сваю квадратного сечения более 600 кН и набивную сваю более 2500 кН значение коэффициента следует принимать равным 1,4, если несущая способность сваи определена по результатам испытаний статической нагрузкой, и 1,6, если несущая способность сваи определена другими способами.

Примечания 1 В скобках даны значения в случае, когда несущая способность сваи определена по результатам полевых испытаний статической нагрузкой или расчетом по результатам статического зондирования грунтов.

2 При расчете свай всех видов как на вдавливающие, так и на выдергивающие нагрузки продольное усилие, возникающее в свае от расчетной нагрузки, следует определять с учетом собственного веса сваи, принимаемого с коэффициентом надежности по нагрузке, увеличивающим расчетное усилие.

3 Если расчет свайных фундаментов производится с учетом ветровых и крановых нагрузок, то воспринимаемую крайними сваями расчетную нагрузку допускается повышать на 20% (кроме фундаментов опор линий электропередачи).

4 Если сваи фундамента опоры моста в направлении действия внешних нагрузок образуют один или несколько рядов, то при учете (совместном или раздельном) нагрузок от торможения, давления ветра, льда и навала судов, воспринимаемых наиболее нагруженной сваей, расчетную нагрузку допускается повышать на 10% при четырех сваях в ряду и на 20% при восьми сваях и более. При промежуточном числе свай процент повышения расчетной нагрузки определяют интерполяцией.

7.1.12 Расчетную нагрузку на сваю, кН, следует определять, рассматривая фундамент как группу свай, объединенную жестким ростверком, воспринимающим вертикальные и горизонтальные нагрузки и изгибающие моменты.

Для фундаментов с вертикальными сваями расчетную нагрузку на сваю допускается определять по формуле, (7.3) где — расчетная сжимающая сила, кН, передаваемая на свайный ростверк в уровне его подошвы;

, — передаваемые на свайный ростверк в плоскости подошвы расчетные изгибающие моменты, кН·м, относительно главных центральных осей и плана свай в плоскости подошвы ростверка;

— число свай в фундаменте;

, — расстояния от главных осей до оси каждой сваи, м;

, — расстояния от главных осей до оси каждой сваи, для которой вычисляют расчетную нагрузку, м.

7.1.13 Горизонтальную нагрузку, действующую на фундамент с жестким ростверком с вертикальными сваями одинакового поперечного сечения, допускается принимать равномерно распределенной между всеми сваями.

7.1.14 Проверка устойчивости свайного фундамента и его основания должна производиться в соответствии с требованиями СП 22.13330 с учетом действия дополнительных горизонтальных реакций от свай, приложенных к сдвигаемой части грунта.

7.1.15 Сваи и свайные фундаменты следует рассчитывать по прочности материала и производить проверку устойчивости фундаментов при действии сил морозного пучения, если основание сложено пучинистыми грунтами (приложение Ж).

7.1.16 Расчет свай и свайных фундаментов по деформациям следует производить исходя из условия, (7.4) гд е — совместная деформация сваи, свайного фундамента и сооружения (осадка, перемещение, относительная разность осадок свай, свайных фундаментов и т.п.), определяемая расчетом с учетом 7.1.4, 7.1.5, по подразделу 7.4 и приложению В;

— предельное значение совместной деформации основания сваи, свайного фундамента и сооружения, устанавливаемое в соответствии со СП 22.13330, а для мостов — СП 35.13330.

7.2 Расчетные методы определения несущей способности свай Сваи-стойки 7.2.1 Несущую способность, кН, забивной сваи, сваи-оболочки, набивной и буровой сваи, опирающейся на скальный грунт, а также забивной сваи, опирающейся на малосжимаемый грунт (6.2), следует определять по формуле, (7.5) где — коэффициент условий работы сваи в грунте, принимаемый равным 1;

— расчетное сопротивление грунта под нижним концом сваи-стойки, кПа;

— площадь опирания на грунт сваи, м, принимаемая для свай сплошного сечения и полых свай с закрытым нижним концом равной площади поперечного сечения брутто, для свай полых круглого сечения с открытым нижним концом и свай-оболочек — равной площади поперечного сечения нетто при отсутствии заполнения их полости бетоном и равной площади поперечного сечения брутто при заполнении этой полости бетоном на высоту не менее трех ее диаметров.

Расчетное сопротивление скального грунта для всех видов забивных свай, опирающихся на скальные и малосжимаемые грунты, следует принимать 20000 кПа.

Для набивных, буровых свай и свай-оболочек, заполняемых бетоном, опирающихся на невыветрелые скальные и малосжимаемые грунты (без слабых прослоек) и заглубленные в них менее чем на 0,5 м, следует определять по формуле, (7.6) гд е — расчетное сопротивление массива скального грунта под нижним концом сваи-стойки, определяемое по — нормативному значению предела прочности на одноосное сжатие массива скального грунта в водонасыщенном состоянии, кПа, определяемому, как правило, в полевых условиях;

— коэффициент надежности по грунту, принимаемый равным 1,4.

«В Минстрое обсудили реализацию пунктов «дорожной карты» 28 мая в здании Минстроя России под «Оптимизация требований к составу и содержанию председательством заместителя министра строительства разделов проектной документации объектов капитального и жилищно-коммунального хозяйства Российской строительства. Промежуточные итоги общественной Федерации Натальи Антипиной состоялось рабочее экспертизы ПП РФ № 87 и направления дальнейшей совещание по вопросу реализации пунктов 11 и 15 Плана работы», а. »

«НИУ МГСУ С К А П В Д 11 3 2 5 2 0 1 5 А АУ ^УТ^.ЕРЖДАЮ Ректор НИУ МГСУ “STA. Волков ;• ^ ^ 2015 г г ­ » к.’ L Ввест^ в действие с -/4 ” 2015 г. по Д Е Л О П Р О И З В О Д С Т В У ИНСТРУКЦИЯ НИУ М ГСУ С К А П В Д 11 3 2 5 2 0 1 5 Вы пуск Москва 2015 НИУ МГСУ СК А ПВД 11 – 325 – 2015 АУ Выпуск 3 Изменений 0 Экземпляр №1 Лист Всего листов 102 1 Назначение и область применения 1.1 Настоящая инструкция по делопроизводству (далее – инструкция) устанавливает порядок разработки, оформления и. »

«РАСЧЕТНО-ТЕОРЕТИЧЕСКИЕ И КОНСТРУКТИВНЫЕ ПРОБЛЕМЫ СОРАСЧЕТНОСОСООРУЖЕ ВЕРШЕНСТВОВАНИЯ ПРОЕКТИРОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ Л.В. Глебушкина, М.Г. Якубовская Братский государственный университет СОВРЕМЕННОЕ СОСТОЯНИЕ НОРМИРОВАНИЯ ГРАДОСТРОИТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ НА ФЕДЕРАЛЬНОМ, РЕГИОНАЛЬНОМ И МЕСТНОМ УРОВНЯХ Проблемы правового регулирования городской застройки в России в настоящее время приобретают чрезвычайную актуальность. Создание объектов капитального строительства является одной из основных форм. »

«Муниципальный контракт: № 5 от 12 декабря 2011 г. ГЕНЕРАЛЬНЫЙ ПЛАН ГОРОДСКОГО ОКРУГА ГОРОД-КУРОРТ ГЕЛЕНДЖИК КРАСНОДАРСКОГО КРАЯ Том I. Утверждаемая часть проекта Часть 1 Положение о территориальном планировании Краснодар, 2012 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ПРОЕКТНЫЙ ИНСТИТУТ ТЕРРИТОРИАЛЬНОГО ПЛАНИРОВАНИЯ» Муниципальный контракт: № 5 от 12 декабря 2011 г. Заказчик: Управление архитектуры и градостроительства администрации муниципального образования город-курорт Геленджик ГЕНЕРАЛЬНЫЙ. »

«Некоммерческое партнёрство «Градостроительное бюро „Сердце города“» 236000 Калининград, Ленинский проспект 30-А, офис 501 тел. +7 (4012) 53 61 47 Проект регенерации исторического центра города Калининграда «Сердце города» Протокол-стенограмма рабочих консультаций по градостроительному формированию исторического ядра города Место проведения: г. Калининград, Музей Мирового Океана, «Малый овальный зал», 2 этаж Дата: 14-16 ноября 2013 На мероприятии присутствовали: Модератор мероприятия: А.Ю. »

«СЕКЦИЯ 6. КОМПЛЕКСНАЯ ЭНЕРГОЭФФЕКТИВНОСТЬ. ИНЖЕНЕРНАЯ ИНФРАСТРУКТУРА ЖКХ И ОБОРУДОВАНИЕ ЗДАНИЙ. ПРИРОДООХРАННЫЕ ТЕХНОЛОГИИ Абдуллаев Ф.Ш., аспирант ИИЭСМ Научный руководитель – Саломеев В.П., канд. техн. наук, проф. ФГБОУ ВПО «Московский государственный строительный университет»ИНТЕНСИФИКАЦИЯ ПРОЦЕССОВ ГЛУБОКОЙ ОЧИСТКИ СТОЧНЫХ ВОД НА СТАНЦИЯХ БИОФИЛЬТРАЦИИ Одним из наиболее востребованных направлений в свете увеличения объемов индивидуального жилищного строительства является совершенствование. »

«Адатпа Бл бітіру жмыста берілген тапсырмаа сйкес «Машина жасау зауытыны электрмен жабдытау» таырыбы бойынша жоба жасалады. Зауытты электрлік жне жарытындыру жктемелеріне есептеу жмыстары жргізілді. Электрмен жабдытау слбасы жасалады, барлы техникалы жабдытар тексерілді жне олара тадау жргізілді. Орындалан блімдер: міртіршілік аупсіздігіні тарауы жне экономикалы блімі. Аннотация В выпускной работе, согласно заданию, разработан проект на тему: «электроснабжения машиностроительного завода». Был. »

«Пояснительная записка к проекту профессионального стандарта «Специалист по ценообразованию и стоимостному инжинирингу в градостроительстве» Москва Содержание Раздел 1. Общая характеристика вида профессиональной деятельности, трудовых функций.. 3 1.1. Информация о перспективах развития вида профессиональной деятельности.. 3 1.2. Описание обобщенных трудовых функций и трудовых функций, входящих в вид профессиональной деятельности, и обоснование их отнесения к конкретным уровням (подуровням). »

«ПРОЕКТ СОВЕТ ДЕПУТАТОВ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ ГОРОДСКОЕ ПОСЕЛЕНИЕ ВИДНОЕ ЛЕНИНСКОГО МУНИЦИПАЛЬНОГО РАЙОНА МОСКОВСКОЙ ОБЛАСТИ РЕШЕНИЕ от _ № _ Об утверждении местных нормативов градостроительного проектирования городского поселения Видное Ленинского муниципального района Московской области В соответствии с Градостроительным кодексом Российской Федерации, Федеральным законом от 05.05.2014 № 131-ФЗ «О внесении изменений в Градостроительный кодекс Российской Федерации», Федеральным законом от. »

«Zhurnal ministerstva narodnogo prosveshcheniya, 2015, Vol.(6), Is. 4 Copyright © 2015 by Academic Publishing House Researcher Published in the Russian Federation Zhurnal ministerstva narodnogo prosveshcheniya Has been issued since 1834. ISSN: 2409-3378 E-ISSN: 2413-7294 Vol. 6, Is. 4, pp. 262-274, 2015 DOI: 10.13187/zhmnp.2015.6.262 www.ejournal18.com UDC 929 Formation of library education in the Tatar Autonomous Soviet Socialist Republic in the 1930-s Nadezhda G. Valeeva Kazan state institute. »

«Председатель комиссии директор ТОГБОУ СПО «Приборостроительный колледж» Юрченко А.А.Члены комиссии: заместитель директора по учебной работе Дородько О.Н. заместитель директора по учебно-производственной работе Мешкова Т.Н. заместитель директора по учебно-воспитательной работе Насекина О.Н. заместитель директора по научно-методической работе Воронцов Е.Б. заместитель директора по информатизации Кондратьева О.А. заведующий учебной частью Давыдова Е.Н. заведующий хозяйством Андреев Ю.А. »

«Инвестиции Проектирование Строительство Эксплуатация IV МЕЖОТРАСЛЕВОЙ ФОРУМ Информационное моделирование как основа управления жизненным циклом объекта капитального строительства 4 июня 2015 год, Москва ОСНОВНЫЕ НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ год образования докторов наук • Инновационные разработки • Строительный инжиниринг • Мониторинг научные школы аспирантов • Разработка отраслевых норм и стандартов • Научно-техническое сопровождение изысканий, проектирования, строительства и эксплуатации •. »

«Строительство уникальных зданий и сооружений. ISSN 2304-6295. 3 (30). 2015. 152-1 journal homepage: www.unistroy.spb.ru Легкие стальные тонкостенные конструкции в многоэтажном строительстве Д.О. Советников, Н.В. Виденков, Д.А. Трубина ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого», 195251, Россия, Санкт-Петербург, ул. Политехническая, 29. Информация о статье История Ключевые слова УДК 69 Подана в редакцию 6 октября 2014 легкие стальные тонкостенные Принята 17. »

«База нормативной документации: www.complexdoc.ru СБОРНИК ОФИЦИАЛЬНЫХ МАТЕРИАЛОВ «ОХРАНА ТРУДА В СТРОИТЕЛЬСТВЕ» ПОСТАТЕЙНЫЕ МАТЕРИАЛЫ к СНиП 12-03-200 «Безопасность труда в строительстве. Часть 1. Общие требования» (по состоянию на 1 сентября 2001 г.) ИД 25.200 АИЦ «СТРОЙТРУДОБЕЗОПАСНОСТЬ» Москва 200 СОДЕРЖАНИЕ Введение Раздел 3 СНиП 12-03-2001 ОПРЕДЕЛЕНИЯ Раздел 4 СНиП 12-03-2001 «ОБЩИЕ ПОЛОЖЕНИЯ» Раздел 5 СНиП 12-03-2001 «ОРГАНИЗАЦИЯ РАБОТЫ ПО ОБЕСПЕЧЕНИЮ ОХРАНЫ ТРУДА» Раздел 6 СНиП 12-03-2001. »

«ЭКОЛОГИЧЕСКИЙ ОТЧЕТ ГАЗПРОМ ТРАНСГАЗ САНКТ-ПЕТЕРБУРГ ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ Общество с ограниченной ответственностью «Газкомпрессорной стации (КС) «Портовая» Северо-Европром трансгаз Санкт-Петербург» создано в соответпейского газопровода (СЕГ). ствии с решением Совета директоров Открытого акКоличество установленных газоперекачивающих ционерного общества «Газпром» № 124 от 25.05.1999, агрегатов (ГПА) – 192 ед. суммарной мощностью постановлением Правления ОАО «Газпром» № 49 от 1795 МВт, в том. »

«Строительство и реконструкция АРХИТЕКТУРА И ГРАДОСТРОИТЕЛЬСТВО УДК 728.84 БУДАРИН Е.Л. КЛИМАТИЧЕСКИЕ ОСОБЕННОСТИ АРХИТЕКТУРНОГО ФОРМООБРАЗОВАНИЯ ЭНЕРГОЭФФЕКТИВНОГО ИНДИВИДУАЛЬНОГО ЖИЛИЩА В СОВРЕМЕННЫХ УСЛОВИЯХ СТАВРОПОЛЬСКОГО КРАЯ Изложены результаты исследования по определению научно обоснованных принципов и рекомендаций для проектирования современных энергоэффективных индивидуальных жилых домов. Изучены природно-климатические условия и факторы, влияющие на тепловой баланс здания и формирующие. »

«УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЪЕДИНЕНИЕ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ОБРАЗОВАНИЮ В ОБЛАСТИ СТРОИТЕЛЬСТВА МЕЖДУНАРОДНАЯ АССОЦИАЦИЯ СТРОИТЕЛЬНЫХ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Национальный исследовательский университет 129337, Россия, г. Москва, Ярославское шоссе, дом 26 тел./факс: +7 (499) 183-57E-mail: [email protected] №58(78) 15 марта 2012 года РЕШЕНИЕ Съезда АСВ, Открытого заседания Правления АСВ и Президиума Совета УМО вузов РФ по. »

«ОГЛАВЛЕНИЕ Введение.. 6 Глава 1. АНАЛИЗ СОВРЕМЕННЫХ МЕТОДОВ ГЕОЭКОЗАЩИТНЫХ РЕШЕНИЙ В СТРОИТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ. 18 1.1. Негативное воздействие строительной деятельности на окружающую среду 1.2. Современные методы геоэкозащитных решений в строительной деятельности и их критический анализ. 20 1.3. Выводы по главе 1.. 34 Глава 2. НАУЧНОЕ ОБОСНОВАНИЕ ГЕОЭКОЗАЩИТНЫХ ТЕХНИЧЕСКИХ И ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ И МЕТОД ОБЕСПЕЧЕНИЯ ГЕОЭКОЗАЩИТЫ В СТРОИТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ. 2.1. Новый подход к оценке. »

«Строительство уникальных зданий и сооружений. ISSN 2304-6295. 5 (32). 2015. 129-140 journal homepage: www.unistroy.spb.ru Солнечная гелиоустановка с блоком диализной очистки сточных вод в системах горячего водоснабжения Л.Р. Джунусова Алматинский Университет Энергетики и Связи, 050013, РК, Алматы, ул. Байтурсынова, 126. Информация о статье История Ключевые слова УДК 621.182.12 (075.8) Подана в редакцию 3 мая 2015 солнечная гелиоустановка, Принята 30 мая 2015 опреснение, электродиализ, Научная. »

«2015 Географический вестник 1(32) Экология и природопользование ЭКОЛОГИЯ И ПРИРОДОПОЛЬЗОВАНИЕ УДК 91(414.1):5 М.Х. Мамедов 3 ЭКОЛОГО-ГЕОГРАФИЧЕСКАЯ ОЦЕНКА СОСТОЯНИЯ ЗАГРЯЗНЁННЫХ ЗЕМЕЛЬ НА ТЕРРИТОРИИ СТАРООСВОЕННЫХ МЕСТОРОЖДЕНИЙ В АПШЕРОНСКОМ ЭКОНОМИЧЕСКОМ РАЙОНЕ АЗЕРБАЙДЖАНА Дана эколого-географическая оценка состояния загрязненных земель в пределах территорий староосвоенных нефтегазовых месторождений в Апшеронском экономическом районе Азербайджана. Определены степень географического. »

Еще по теме:

  • Законы рсфср о милиции Закон от 18 апреля 1991 г. N 1026-I "О милиции" Изменения и поправки Текст Закона опубликован в Ведомостях Съезда народных депутатов РСФСР и Верховного Совета РСФСР от 22 апреля 1991 г., N 16, ст. 503 (в ред. Законов РФ от 18 февраля 1993 г. N 4510-1, от 1 […]
  • Пенсия для прорабов Имеет ли бывший строитель-прораб право на досрочную пенсию в 57 лет? Дополнительные материалы: Добрый день, уважаемые!Интересует такой вопрос. Мне 57 лет, трудовой стаж более 25 лет. в качестве строителя прораба до этого проработал 10 лет.. Давно ещё.. […]
  • Министерство культуры приказ 1488 Gerere24.ru Приказ министерства культуры 1488 от 03122012 Министерство культуры российской федерации И ПЛЯЖИ, ОСУЩЕСТВЛЯЕМОЙ АККРЕДИТОВАННЫМИ ОРГАНИЗАЦИЯМИ В соответствии со статьями 4 и 5 Федерального закона от 24 ноября 1996 г. N 132-ФЗ «Об основах […]
  • Приказ мз от 14122009 984н Приказ Министерства здравоохранения и социального развития РФ от 14 декабря 2009 г. N 984н "Об утверждении Порядка прохождения диспансеризации государственными гражданскими служащими Российской Федерации и муниципальными служащими, перечня заболеваний, […]
  • Пенсия октябрь спб график выдачи График выплаты пенсий в октябре 2018 года в Санкт-Петербурге График выплаты пенсий, ЕДВ и иных социальных выплат в октябре 2017 года через отделения почтовой связи Санкт-Петербурга: По ОПС 198218; 198326; 198411; 198517; 198325; 198327; 196140; 196621; […]
  • Перевели пенсию за январь График выплаты за сентябрь 2018 года пенсий и иных социальных выплат через отделения почтовой связи Дата выплаты по графику Дата фактической выплаты 3 3 сентября 4 4 сентября 5 5 сентября 6 6 сентября 7 - 8 7 сентября 9 - 10 10 сентября 11 11 сентября 12 12 […]
  • Закон янао от 27062013 55 Закон Ямало-Ненецкого автономного округа от 27 июня 2013 г. N 55-ЗАО "Об образовании в Ямало-Ненецком автономном округе" (с изменениями и дополнениями) Закон Ямало-Ненецкого автономного округа от 27 июня 2013 г. N 55-ЗАО"Об образовании в Ямало-Ненецком […]
  • Налог на имущество начисление пени Калькулятор пеней по налогам и страховым взносам Сегодня 26 августа 2018 г., 16:22 Если плательщик не перечислил в установленный законодательством срок какой-либо налог или страховой взнос, то ему начисляются пени (ст. 75 НК РФ, ст. 26.11 Федерального […]